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It is pointed out that the Schwinger variational principle of scattering theory 
applies to the case of linear and nonlinear relaxation problems in quantum 
statistics. By means of this principle it is possible to derive closed sets of 
equations for expectation values. To illustrate this variational method and to 
clarify the connection to other standard approaches some simple examples are 
treated for which the equations of motion are already known. 
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1. I N T R O D U C T I O N  

For classical dynamic correlation functions of linear response a Schwinger- 
type variational principle has been formulated. O) Later the same idea of 
such a variational principle has independently been introduced for quan- 
tum systems. ~2~ It  is the purpose of this paper  to point out that this 
variational principle, formally taken from scattering theory, can be ex- 
tended to the case of general dynamics of macroscopic observables. In this 
general form the variational principle can be used to derive closed systems 
of equations for macroscopic variables from the microscopic von Neumann  
equation. In this paper  we will give no new equations of motion. We wish 
only to establish the variational principle and to demonstrate how it works. 
To this end we treat simple physical examples and show how standard 
equations of statistical mechanics emerge from this variational approach. 
The examples considered can be a guide to find a suitable variational 
ansatz in complicated cases. 

i Sonderforschungsbereich 65 Darmstadt-Frankfurt, Frankfurt, West Germany. 
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2. STAT IONARY VARIATIONAL PRINCIPLE 

Consider a system with time-independent Hamiltonian % described by 
a statistical operator p. Then the time evolution of any observable A~ can 
be expressed as follows: 

(Av)(t)  = TrpetLtAv (1) 

where the Liouvillian L is defined by 

= ( 1 / h ) [ ~ , A ]  (2) 

Now from (1) it is evident that the Laplace transform of (Av)(t)  can be 
written as a resolvent 

(Av)(z)  = - i  fo~176 dteiZt(A~)(t ) = Trp(z + L)-1Av (3) 

The calculation of a resolvent is a basic mathematical problem in scattering 
theory. (3) Hence we can transfer the methods used there to quantum 
statistics and write down a Schwinger-type functional 

F [ ~ ' , ~ ]  = Trq~'A~ + T r p ~  - TrqY(z + L)e~v (4) 

which has to be varied with respect to q,' and ~ .  It is a simple matter to 
show that F is stationary for 

q~vst = (z + L ) - ' A  v = Av(Z ) (5a) 

= ( z  - L)- p = p ( : )  (Sb) 
and the stationary value of F is given by 

r[ , ' s t ,  q~st] = Trp(z + L)-IA~ = (A~)(z) (6) 

Starting from the functional (4) and a suitable ansatz for +' and qv one can 
find approximations for (A~)(z). This is in practice possible if one has 
some idea in which part of the Liouville space the stationary values (5) of q' 
and q~v will be. Then this subset can be parametrized, and the parameters 
can be determined from 6F = 0. 

In the next section we shall use linear parametrizations of the chosen 
subsets, in section 4 we will introduce nonlinear parametrizations as well. 
Common to all variational principles, the accuracy of the results will 
crucially depend on the chosen subsets. The variational method will be 
demonstrated in each section by well-known physical examples. 

3. LINEAR VARIATIONAL ANSATZ 

Let % and rp~ be two sets of vectors such that linear combinations of % 
and of cp' v lead to approximate expressions for A~(z) and p(z), respectively. 
The question how to find these sets will be discussed later (see Section 3.2). 
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Now, according to the desired expression (5) for ~v and ~' it is reasonable 
to take the following ansatz: 

r = ~,, c ~  (7a) 
# 

/z 

Inserting the ansatz (7) into (4) we find for F 

- ~,, c'~cvxTrrp'~(z + r)epx (8) 

The stationary conditions of F read 

~cvaTr~ '~(z  + L)~0 x - rrcp'~A v = 0 (9a) 

'~ c~,Tr~(z + L)~0~ - T r p ~  = 0 (9b) 
)t 

Equations (9) determine the stationary values 

(co.)s ' = co~(z) 
! (C~)st = c~(z) (10) 

which depend on the frequency z. Using the equations (9), we find for the 
stationary value of F 

F s t ( Z )  = F[~b'st ,~bvst]  = T rp~bvs t (Z  ) = TreP ' s t ( z )A  v ( 1 1 )  

where 

~ost(Z) = ~ (~v~)s,~ 
" (]2)  

approximate Av(Z) and p(z), respectively. It suffices, however, to solve one 
of the decoupled systems of equations (9a) or (9b). 

3.1. A Linear System of Differential Equations for Expectation 
Values 

Transforming the equations (9a) or (9b) into the time region, and 
taking appropriate linear combinations, we find the following system of 
linear equations for Fst(t ) = (A~)(t): 

( A v )  - i ~  (Ax)Axv  = 0 (13a) 
X 
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where the kinetic matrix A is defined by 

A = a - l L f l - l o t  

av~ = Tr~0~A~ 
(13b) 

L~  = Tr ~o~L% 

According to (9) the initial conditions are 

( A v )  (t  = 0) = ~ Tr 0% (/3 - l(x)~,~ (14) 
/L 

In (13) we have derived a system of equations for expectation values ~Av).  
Because of 

*'st(t) "= E (C~),t(t)qO~ (15)  

we alternatively can use equations (9b) to derive a master equation for the 
relevant statistical operator prel(t) - ~b~st(t). We will discuss this aspect later 
by means of a special example (see Section 3.6). 

3.2.  C o n d i t i o n s  o n  % and  qo'~ 

In equations (13) the kinetic matrix A remains still undetermined as 
long as the vectors % and q0~ are not specified. For a given set of 
observables (A~} and a given set of initial statistical operators (O) we now 
discuss an appropriate choice of the subspaces (% } and (% }. 

It is physically reasonable to demand that the solution of (13) with 
initial conditions (14) would become exact for t = 0. This implies 

( A v ) ( t  = O) = TrpA~ (16) 

From (14) one sees that condition (16) is fulfilled if either 

p = ~, r, rp', (17) 

holds for all statistical operators p to be considered or 

A v = ~ ,  av~ep~ (18) 
/L 

where r~ and a~, are c numbers. 

3.3. Simplest Choice of % and ~ 

The simplest ansatz, which fulfills the physically reasonable condition 
(16), is given by 

% = A v 
rp~ -- R e (19) 
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Here we have introduced a basis (Rv} of the space spanned by the 
statistical operators p which are to be considered: 

p = ~,  rvR v (20) 
/9 

The ansatz (19) obviously fulfills (17) and (18) and, therefore, equation 
(16). This means: The solution (l l) is exact for z --> oo 

Fst(Z--) ~ )  = (av)exaet(z--~ ~) (21) 

Because of/3 = a we find for the matrix A 

A =  a-]L------ f~ 

av~ , = Tr R~At~ (22) 

= TrRvLA  

Inspection of the equation of motion (13a) shows that the result (22) for the 
matrix A implies the correct values for the derivatives (A~) at t = 0. The 
solution of (13a), therefore, represents an extrapolation of the short-time 
behavior of (A~( t ) .  Normally, this procedure does not lead to a descrip- 
tion of damping phenomena. To describe such effects it is necessary to find 
a solution of (Av~(t) which is meaningful for long times, too. We will treat 
this problem in the next section. 

3.4. Choice o f %  and cp' v for "Slow Variables" 

Now let us seek a more useful ansatz, which would give the exact 
result for two different values of z, say z ~ ~ and z = z 0. We already know 
that the ansatz ~ = R v gives the exact result for (Av)(z)  at z--->oo, 
Fst(Z---~ oo)--(Av)exact(z--> oo), whatever the ansatz for % may be. Vice 
versa, the ansatz % = Av(zv) yields the exact result for (A~)(z) at z = z v, 
Fst(Zv) = (Av)exact(zv), whatever we may have used for ~o~. This follows from 
(9b) and (11). We therefore expect that the ansatz 

 v=Ro 
% = A~(Zv) (23) 

would give an appropriate interpolation for (dv~(Z) between the exact 
values (d~(z~)  and ( A ~ ( z  ~ co). 

In order for this interpolation between the two frequencies z = ~ and 
z = z~ to represent a useful approximation of the exact result, we have to 
postulate some properties of the observables d r :  Let us assume that 
e-i~~ is a "slowly varying quantity," which means that its Fourier 
transform is peaked at ~ = 0, or the Fourier transform of Av( 0 is peaked at 

= - ~ ,  respectively. If e-i~'tXv(t) were constant in time, we would have 

Av(z ) = Cv(Z)A~(z,~ ) (24) 
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so that the ansatz 

~o = A~(~) (25) 

would lead to the exact result for (A~)(z ) .  Hence we expect for "slowly 
varying" e- i~ tAv( t  ) the variational ansatz % = Av(z~) to be adequate. 

To find the frequency o~ in the Fourier spectrum of A~(t) we use 
perturbation theory and demand that there exists a main part L 0 of the 
Liouvillian L = L o + gL 1 with 

LoA~ = o~A~ (26) 

In  this case we choose z~ = - %  + iB. Then equation (26) leads to 

foo ~ iz~ iL~ " -- i fo~  dT e-~eiL~e-iL~ v A ~ ( z ~ ) = - i  d~e e av= (27) 

Since we will use the linear ansatz 

*o = ~ c v ~ =  E Cv/~(z~) (28) 
/L ~t 

we can take linear combinations of Av in (27) as well. From this we 
conclude the following: 

Given a set (Av} invariant under L 0 

roAv = Y, L~ (29) 
# 

then a suitable ansatz for ~0~ and % is 

~ = R~ 
(30) 

% = - i fo~d~ e - n~e iLze - iL~ 

Now ansatz (30) leads to the following result for the matrix A defined in 
(13b): 

A = a + iv (31) 

where the expression for the matrix f~ reads 

(aa )v  ~ = Tr RvLA~ 
(32) 

%~ = Tr  R~A, 

This term has already been found by means of the simple ansatz (19) 
[compare Eq. (22)], where it was the only contribution to A. The matrix F is 
expressed as 

g 2 f o ~ d z e - ~ T r R v L ' l e i r ~ 1 7 6  O(g 3) (33) (~r)v~= 

where a is given by (32) and L~ is defined by 

L'1X = L~X - ~_~ L I A . ( a  - ' ) .  TrR~X (34) 
tt,v 
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To arrive at formula (33) we have used the result of first-order perturbation 
theory for the time-evolution operator eiLt. 2 

The basic results of our linear variational method are presented in 
equations (9) and (11). These equations can be rewritten as a linear system 
o f  differential equations (13) for the expectation values of observables A v. 
The kinetic matrices involved may be specialized to yield the expressions 
(22) or (31), (32) and (33) respectively. These variational results comprise 
various projection-operator approaches. This fact will be discussed in the 
Appendix. Here we only want to illustrate this connection by simple 
examples. 

3.5. Example: Linear Relaxation of Parallel Magnetization 

First let us discuss the relaxation of a magnetization M z parallel to a 
static magnetic field H if the field is changed by a small amount AH. The 
purpose of this example is to illustrate the connection to a Markovian 
approximation of Mori's t h e o r y  (n) of linear Langevin equations. Consider a 
system described by the Hamiltonian 

% = %0 + g%1 

%o = - H M z  + % o ( H  = 0),  [ M z, %0(0) ] = 0 (35 )  

and the statistical operator at t -- 0 

p =  R(AH)=[ Z(AH)]-le -B(%-~HM~), 
3 R  fl = ( k T ) - '  (36) 

= R(0) + AH 8-~--- ~ ~H=0 

for small AH. Thus the space of considered statistical operators {P) is 
spanned by R l = R(0) and R 2 = ( O R / a A H ) ] ~ H =  o. We therefore choose 

A I = 1, A 2 = M~ - <M~)~ ,  <M~)~  = T r R ( O ) M  z 

0R all=0 (37) & = R (0) ,  R2 = 

Since equation (29) is fulfilled, we can consider A 1 and A 2 to be "slow 
variables." Applying ansatz (30) we immediately find from (32), (33), and 
(13a): f~ = 0, ~11 = 1, a22 = X, and 

(M~) = - r ( ( M ~ )  - ( M ~ ) ~ )  

(M~)(O) = ( M ~ ) .  + A H x  (38) 

2 In the case where L] = L l and equation (26) holds, we directly find expression (33) for F by 
the ansatz 

% = { ( ~  + Lo)-'  - (Zv + Co)-'L,(zo + Lo)- ' )Ao 
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where the damping constant F is given by 

F = x - , (  g ) 2 f o ~ 1 7 6  . 3R Tr O---~- f f  an=o[%,, [%,0"),M~] ] 
(39) 

%~(z) -- e(i/h)~%~ e -(i/h)~: 

For convenience we have introduced the isothermal magnetic susceptibility 
X = O M J O H ) T .  Equations (38) and (39) are usually derived by Mori's 
theory (4) and are a standard result in linear magnetic relaxation theory. 

3.6, Example: Master Equation for the Statistical Operator R, of a 
Subsystem 

In our second example we consider a system %, in contact with a heat 
reservoir %B. Let the Hamiltonian be 

% = %, + %8 + g%1 (40) 

The equilibrium statistical operator of the heat reservoir is denoted by 

RB = Zn--I e -B% (41) 

We now use ansatz (30) and equation (9b) to derive the standard master 
equation for the relevant statistical operator R, of the subsystem %s. Let 

A v = A~') 

Rv = Rs" R (') (42) 

where both sets (A~ ") } and (Rv (') } span a complete basis of the Liouville 
space of the subsystem. Then condition (29) is fulfilled and ansatz (30) 
immediately yields the following differential equation for Rs3: 

R,(t) = Tr B *'(t) = ~ c;(t)R~v ") 

(43) 
.R,= -eL, R,-( {)2fo~dme-n*Tr~[%1,[%,(-'r),R~R,] ] 

which is the standard result for the time evolution of the reduced density 
operator.(5) 

4. NONLINEAR VARIATIONAL ANSATZ 

In Section 3 we have considered linear parametrizations of the various 
sets (@') and (@v}. They lead to linear systems of equations for expectation 
values of macroscopic observables A~, or to linear master equations for 
relevant statistical operators R,, respectively. In this section we want to 

3We have taken <%l)B = TrB RB%I = 0. 
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discuss a nonlinear parametrization of the set {q~'). We, therefore, drop the 
condition that 4~' be only linearly dependent on the variational parameters 
( c v ) and write 

�9 o o  i z t  t t 

~ , ' ( z ) = - t  f0 dte , (cv(t))  
(44) 

,v=XCo. . 
Ix 

The nonlinear function r will be defined later. Inserting the ansatz (44) 
into (4) we find for our functional 

F[c',c] = Trqr + ~ c ~ . T r p ~ -  2cv.Trq~'(z)(z + L)% (45) 
I x Ix 

Variation with respect to the parameters cv. gives 

Tr ep'(z)(z + L)% - Tr p% = 0 (46) 

determine the stationary values of c', which will be These equations 
denoted by kv(t ) 

(c;(t))st  = • v ( t )  (47) 

Using relation (46) and the definition 

R (z) = (~'(z))st (48) 

we can write for the stationary value of F 

Fst = TrR(z)A v (49) 

Transforming equations (46) into the time region, we find for R(t)= 
q,'()%(t)) the following differential equations: 

Tr%(R + iLR ) = 0 (50) 

which have to be solved with the initial conditions 

Tr%R( t  = 0) = Tr%p (51) 

Equations (50) and (51) are equivalent to (46). 
We now want to choose an explicit form of the function qr For a 

given set of macroscopic observables Av we will consider the following set 
of initial statistical operators: 

p(~o) = e x p ( -  ~v ~~ (52) 

where the parameters ~o are considered to be given by the expectation 
values of A~ at t = 0. 

In the following we will suppose that the unity operator is a linear 
combination of Av: 

1 = ~ avA v (53) 
1) 
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From the form (52) we are led to take the following function ~'(Cv) as an 
ansatz in (44): 

' ' ( - ~ v  ' ) (54) (c~) = exp c~A~ 

The "relevant statistical operator" (49) then reads 

R(t) = exp[- ~ ( t ) A ~ l  (55) 

The parameters ~ ( t )  are the stationary values of c~(t), and are to be 
calculated from equations (50) together with the initial condition (51): 

= 2,o. 

Let us summarize: Our nonlinear variational ansatz (44) and (54) has 
led to the system of equations (50) for R(t), the form of which is given by 
(55). Choosing the same set % as in Section 3, we now can derive a closed 
system of nonlinear equations for the expectation values (A~)(t). This 
procedure will be outlined in the following section. 

4.1. A Nonlinear System of Differential Equations for Expectation 
Values 

Equation (49) defines (A~)(t) as a function of ~v(t): 

(Av)(t) = (A~)(X~(t)) (56) 

Conversely, the stationary functions ~v(t) and the statistical operator R(t) 
(55) depend on the time t by the functions (A~)(t): R(t)= R((Av)(t)). 
Now because of relation (53) R(t) may be expressed as (6) 

R = 0R (57) 
x 0(A ) 

By means of the identity (57) we can transform equations (50) into the 
following nonlinear differential equations: 

(A, )  - i E (Ax)Ax~((AK)) = 04 

A = Lfl - l  
(58) 

0R L~ = Tr ~ / . ~  
O<Av> 

OR flv,= Tr ~ % O(A ) 

4An equivalent form to the equation of motion (58) reads 

(~lv) - i ~ T r  RLepx(fl-l)xv= 0 
h 
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The system (58) is the analog to the system (13). Contrary to equations (13), 
however, (58) generally constitutes a system of nonlinear differential equa- 
tions, because the kinetic matrix A depends on (A~). 

It holds that R ( t  = O)= p, hence it follows from the relation F s t  ~- 

T r R ( t ) A ~ ,  that Fst(t ) becomes the exact value of (Ave( t )  = 0, whatever the 
special choice for % may be. 

In section 3, possible choices of % were discussed. Let us use here the 
same two sets 

% = A v (59a) 

and 

= - ifo~176 e-"~eiL~e -iL~ (59b) % 

If it holds that LoA ~ = %A~,  then the % of (59b) again lead to the exact 
values of ( A v } ( z )  at z = z v = - o ~  + i~l. This fact follows from (46), (48), 
and (49): 

TrOAv(zv)  = T r R ( z v ) A  ~ = Fst(Z~) (60) 

Applying the % of (59) we can rewrite the kinetic matrix (58). In case (59a) 
we find 

/3=1 
A = f~ (61) 

In case (59b) we have 

3R ~2~, = Tr ~ LA~ 

A = f~ + iI" (62) 

where ~ has already been defined by (61) and F is  given by 

= g2 fo~176  3R L'~t" icon. -iLo~. ,t )e L,e + O( d )  

- - - X  ( 6 3 )  L ' , ( t ) X =  L , X  ~ L , A ~ T r  3R 

To illustrate the nonlinear formalism outlined above, we will apply it to 
some simple examples in the next sections. 

4.2. Example: Time-Dependent Hartree-Fock Equation 

As a first example for the nonlinear system (58) let us apply ansatz 
(59a). Consider a quantum gas of bosons or fermions with two-particle 
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interactions: 

We choose 

%0 = ~ qa~- a 1 
1 

%1- 1 ~ .  Vlzl,2,a~-af a2,al, 
2N lV22' 

(64) 

Ao=  1 

A~ = al + a 2 (65) 

( + ) r c12 ) = exp - ~ claa I a 2 - C~o 
12 

The kinetic matrix (61) can be evaluated explicitly. From (58) we arrive at 
the following nonlinear system of equations for the one-particle density 
matrix (a~- a2)(t ) = (2lo (l)(t)l 1) 

(21o ( 0(t)l 1) = - ( i / h ) ( e  2 - q)(2[o (')(t)l 1) 
at 

1 
+ ( i / h )  ~ 34~4 ' {( V424, 3 ~ V244,3) (a ' lp( l ) ( t ) la) (310( l ) ( t ) l  1)  

--  (V434,1 --+ V344q)(4 ' ip(1)( t )[4)  

x (210(1)(013)) 

They are the well-known Hartree-Fock equations. (7) 

(66) 

4.3, Example: Nonlinear Heat Conduction 

To discuss ansatz (59b) let us consider the heat conduction between 

We take 

[%1, %2] = 0 (67) 

A0= 1 

A v = %v, v = 1,2 (68) 

 C'v v - 

From (50) and (59b) we directly find the equation for heat conduction 

( ~ C l )  = - -  F ( / ~ v  ) (  82  - i l l )  = - ~}(~2) (69) 

two reservoirs ~1 and ~ 2  

= ~3Cl + ~2 + g~12, 
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where the thermal conductivity 1"(flv) is given by 

F( flv ) = foO~ e- '~ fo'd)t Tr R l-X~C,(r)RX~C 1 + O ( g  3) 

R( f lo)=  [ Z ( r v ( t ) )  ] - ' e x p ( -  ~ ro( t )~v)  (70) 

~ ,  = ( i /h)g[ 3C,:, 96, ] 

~(~('r) = e (i/h)(%' +~2) ' r~ 1 e (-i/~)(%' + %z), 

The thermal conductivity I" itself depends on rio(t); thus (69) represents a 
nonlinear system of heat conduction equations. (8) 

4.4. Example: Nonlinear Dynamics of a Spin System 

In Sections 4.2 and 4.3 we have regarded examples where the kinetic 
matrices A were given by A = ~ or by A = iF, respectively. We now want 
to treat a simple example where both terms ~2 and F contribute to A. 

Consider the physical system of Section 3.6, where we now specialize 
the subsystem S to be constituted of N spins s = 1/2 in an external 
magnetic field H. Thus we write 

i 

g ~ l  = g E ( Bi + S i -  q- B i -  Si +) 
i 

+ 
(Bi+-> = Tr B RBB i- = O, 

Now let us take 

R B = ZBIe -~%B 

(71) 

Ao=  1 

Av = E Si v' v = +, - , z  (72) 
i 

i 

and use ansatz (59b). Then a straightforward calculation of (58) yields the 
following nonlinear equation for M = "/~,i(Ss>: 

M = - ~ , (n  • H) - D-  ( n  - Moo) - y 'M • Mze z + 7"(M • (M • H)) 

(73) 
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where 

Eol I~ H = Moo = , Moo - Nyh tanh "yhH 
Mo o 2 2kT 

[1 / r  0 1  (73a) 
D = 1//r 

0 2 /r  

yr' -- - 2 f R e  ~ E • / 
i~ j  

7Hy" = - 2g2Im ~ 2 XO(Y H)  
i4-j (73b) 

y r - ' =  - (g2 /2 )M~l Im(~ i  Xii(YH)) 

l s176 • = -~ B, + ( t ) , g - 1 )  

The first term on the right of equation (73) constitutes the linear reversible 
motion, the second term is the Bloch damping, the third renormalizes the 
reversible motion by a molecular field: 

(M)rev = - y(M • Heft) 

3" )ez (741 Hal = ( _ H + - -  M z 
\ Y 

and the last term is the Landau-Lifschitz damping (91. 

5. CONCLUSIONS 

It has been shown that the Schwinger variational principle of scatter- 
ing theory is suited for quantum statistics, where it allows a derivation of 
macroscopic equations of motion. 

The variational method might be useful to improve known results by 
optimizing parameters, or will make it possible to attack complicated 
problems if the dynamics for different limiting cases is known and one 
wants to treat an intermediate situation. 

APPENDIX 

To point out the connection of our result of linear relaxation problems 
to standard "projection-operator" approaches, let us define the following 
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idempotent operator P: 

P X  = E A v ( a  - ' ) v  Tr R,X (A.I) 
v,/x 

where a is given by (22). Then by means of (A.1), relation (11) can be cast 
into the following form: 

(a) In case of ansatz (19) one obtains 

Fst(z ) = Tr p(z + P L P  ) -  lA v (A.2) 

(b) In case of ansatz (30) and LoAv = 0 for all v one arrives at 

F~t(z ) = T r p [ z  + P L P -  M ( i • ) ] - I A v  (h.3)  

where 

M ( z )  = P L Q ( z  + Q L Q )  - I  QLP,  Q = 1 - P (A.4) 

Inspection of the results (A.2) and (A.3), (A.4) and the exact expression for 
(Av)(Z) 

( A v ) ( z )  = Trp(z  + P L P  - M ( z ) ) - ' A ~  (A.5) 

shows that the ansatz (19) in the variational method neglects memory 
effects, but gives an exact description of the systematic part of dynamics, 
whereas ansatz (30) corresponds to a Markovian approximation in the 
memory kernels. 
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